چشم انداز: حال که با مفهوم توابع با تغییرات کراندار آشنا شدیم ، می خواهیم بدانیم که آیا همه توابع پیوسته با تغییرات ِ کراندارند؟ یا حتی اگر f با تغییرات کراندار باشد ، چه رابطه ای بین پیوستگی f و Vf بر بازه های بسته وجود دارد ؟ و در پایان این بخش به محاسبه ی Vf از روی تابع f می پردازیم.
مثال زیر در پاسخ به این سوال که آیا تمام توابع پیوسته با تغییرات ِ کراندارند، به ما کمک می کند.
مثال ۴-۱ : اگر تابعی پیوسته با ضابطه ی زیر باشد
به ازای هرعدد طبیعی n می توان افرازهای Pn را به صورت زیر در نظر گرفت
در این صورت خواهیم داشت
حال چون سری واگراست لذا سوپریمم ها به ازای وجود ندارد و از طرفی طبق رابطه ی زیر
نتیجه می گیریم که f بر بازه ی با تغییرات کراندار نیست.
این مثال نشان داد که توابع پیوسته ای بر بازه های بسته وجود دارند که با تغییرات کراندار نیستند.
در قضیه زیر رابطه ی بین پیوستگی یک تابع با تغییرات کراندار بر[a,b] را با پیوستگی تابع تغییرات کل آن روی همان بازه بررسی می کنیم.
قضیه ۷-۱ : اگر f بر بازه ی [a,b] با تغییرات کراندار باشد ، در این صورت f بر هرپیوسته است اگر و فقط اگر Vf بر این نقطه پیوسته باشد.
برهان : ابتدا فرض کنیم Vf در هر نقطه ی پیوسته باشد. پس برای هر e>0 ، d>0ی هست که
با توجه به بحث های قبلی داریم
این رابطه نشان می دهد که f بر هر پیوسته است .
بر عکس فرض کنیم f در هر نقطه ی پیوسته باشد. پس برای هر e>0 ، d>0ی هست به طوری که برای هر و
از طرفی داریم
( ۲)
با تلفیق روابط (1) و (2) داریم
یعنی
از طرفی داریم
بنابر این نتیجه می شود که اگر آنگاه
لذا Vf در نقطه ی از طرف راست پیوسته است . به طور مشابه می توان ثابت کرد که Vf در نقطه ی از طرف چپ پیوسته است . بنابراین Vf به ازای هرپیوسته است. این پایان برهان خواهد بود .ð
برای ادامه بحث به چند تعریف نیازمندیم :
تعریف ۸-۱: نگاشت پیوسته f از [a,b] به R را یک منحنی در R گوییم . همچنین اگر f یک به یک باشد، آن را کمان یا قوس گوییم.
تعریف ۹-۱: منحنی f که بر بازه ی [a,b] تعریف شده را طول پذیر گوییم هرگاه f بر این بازه با تغییرات کراندار باشد.
یاد آوری :
قضیه زیر ما را در محاسبه تغییرات کل تابع در بازه ی [a,b] یاری می کند.
قضیه ۸-۱: اگر 'f بر بازه ی [a,b] یک منحنی با تغییرات کراندار باشد، آنگاه f نیزبر این بازه، یک منحنی با تغییرات کراندار است و داریم
برهان : برای هر افراز از بازه [a,b] داریم
یعنی
(*)
این نشان می دهد که منحنی f بر [a,b] با تغییرات کراندار است.
از طرفی پیوستگی 'f بر بازه [a,b] ، پیوستگی یکنواخت آن را بر این بازه نتیجه می دهد ، بنابراین
بنابراین با فرض ||P||<d برای هر داریم
بنابراین اگر داریم
از طرفی
بنابراین
با جمع بندی رابطه ی اخیر برای i=1,2,…,n داریم
یعنی
برای هر e>0 دلخواه. بنابراین
(**)
با توجه به روابط (*) و(**) برهان کامل می باشد .ð
با این قضیه به پایان مبحث توابع با تغییرات کراندار رسیدیم. جلسات آینده ، مبحث انتگرال ریمان-اشتیل یس را شروع می کنیم .