ستارگان ریاضی ۸۳

هدف ما ایجاد یک منبع سرشار ریاضی است، ادامه فعالیت های ما در سایت ریاضیات ایران با آدرس www.irmath.com پیگیری می شود منتظرتان هستیم

ستارگان ریاضی ۸۳

هدف ما ایجاد یک منبع سرشار ریاضی است، ادامه فعالیت های ما در سایت ریاضیات ایران با آدرس www.irmath.com پیگیری می شود منتظرتان هستیم

آنالیز ریاضی ۲ جلسه ۴ قسمت۲( پس از ویرایش )

قضیه ۱-۲: اگر و بر بازه ی بسته [a,b] آنگاه به ازای هر دو عدد حقیقی و متناهی c و d  داریم بر بازه ی بسته [a,b]   و

 

برهان : فرض کنیم  h = cf + dg   . به ازای یک افراز مفروض از بازه ی بسته [a,b] مانند P می توان نوشت

 

اکنون اگر e>0 داده شده باشد، را طوری انتخاب می کنیم که برای هر افراز P که نا مساوی ِرا ایجاب کند. همچنینرا طوری انتخاب می کنیم که برای هر افراز P که نامساوی بر قرار باشد . اگر، به ازای هر افراز ِ ظریفتر از  مانند P داریم

 

از آنجا که c و d اعداد حقیقی متناهی اند و روابط فوق به ازای هر e>0 برقرار اند ، لذاو

 

و این پایان برهان است.ð

 

مشابه قضیه فوق (قضیه ۱-۲) که برای ترکیب خطی دو تابع انتگرالده روی یک انتگرالگیر و بازه ی بسته مشترک بیان شد، می توان برای ترکیب خطی دو تابع انتگرالگیر با انتگرالده و بازه ی بسته مشترک بیان و اثبات کرد. ما این قضیه را بیان کرده و از ذکر اثبات آن خودداری می کنیم .

 

قضیه 2-2: هرگاه وبر بازه ی [a,b]، آنگاه به ازای هر دو عدد حقیقی متناهی ِ c و d داریم

بر بازه ی [a,b]  و .

 

قضیه زیر به این مطلب اشاره دارد که اگر تابع f بر بازه ای بسته نسبت به a دارای انتگرال ریمان-اشتیل یس باشد، برهر زیر بازه ی بسته ی آن  نیز دارای انتگرال ریمان-اشتیل یس است.

 

قضیه ۳-۲ : فرض کنیم ، اگر دو انتگرال از سه انتگرال زیر موجود باشند، آنگاه انتگرال سوم نیز موجود خواهد بود و

 

برهان :  فرض کنیم بر بازه های و  و e>0 داده شده باشد . افراز ، از موجود است به طوری که به ازای هر افراز ظریفتر از آن ، مانند P1  داریم

 

و همچنین افرازی مانند از موجود است به طوری که به ازای هر افراز ظریفتر از آن ، مانند P2 داریم

 

اکنون افرازی از[a,b]  خواهد بود . اگرP افرازی از[a,b]  به طوری که از ظریفتر باشد، افرازهای

  و

به ترتیب از افرازهای و ظریفتر خواهند بود. داریم

 

از طرفی

 

پس  بنابر تعریف بر [a,b]  و . به این ترتیب برهان این قضیه نیز کامل می شود. ð

نظرات 0 + ارسال نظر
برای نمایش آواتار خود در این وبلاگ در سایت Gravatar.com ثبت نام کنید. (راهنما)
ایمیل شما بعد از ثبت نمایش داده نخواهد شد